

Emissionen aus Anlagen der österreichischen Zementindustrie

Emissionen aus Anlagen der österreichischen Zementindustrie Berichtsjahr 2017

Gerd Mauschitz
Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften
Technische Universität Wien

Inhaltsverzeichnis

			Seite
1	Prob	plemstellung	2
2	Date	enerfassung	3
	2.1	Erfaßte Schadstoffe	3
	2.2	Erfassungszeitraum	3
	2.3	Erfaßte Anlagen	3
3	Erge	ebnisse, numerische und graphische Darstellungen	5
	3.1	Produktionsstatistik	7
	3.2	Brennstoffstatistik	8
	3.3	Energiestatistik	9
	3.4	Rohstoff- und Zumahlstoffstatistik	15
	3.5	Emissionsstatistik	18
4	Kurz	zkommentar zu den Ergebnissen	26
	4.1	Anlage- und Produktionsdaten	26
	4.2	Emissionen	27
5	Tab	ellenverzeichnis	30
6	Abb	ildungsverzeichnis	30

Einleitung

Mit Hilfe von Emissionsbilanzen - sie geben Auskunft über das Maß der Luftbelastung mit Schadstoffen - können Szenarien ausgearbeitet und Aktivitäten zur Verminderung solcher Beeinträchtigungen gesetzt werden. Durch das regelmäßige Erstellen von Emissionsbilanzen ist man in der Lage, die Wirksamkeit von Schadstoffminderungsmaßnahmen zu überwachen und gegebenenfalls zu intensivieren.

Der vorliegende Bericht informiert über pyrogene und prozeßspezifische Emissionen aus Anlagen der österreichischen Zementindustrie für das Bilanzjahr 2017. Es werden die damit im ursächlichen Zusammenhang stehenden Produktions- und Betriebsdaten aufgezeigt und die Einsätze an thermischer und elektrischer Energie, die Verwertung von Ersatzbrennstoffen, die Verwendung von Altstoffen in Form der sekundären Rohstoffe und der sekundären Zumahlstoffe dokumentiert und damit der Beitrag den die österreichische Zementindustrie zur natürlichen Ressourcenschonung leistet, aufgezeigt.

Mit dem vorliegenden und von unabhängiger dritter Seite erstellten Bericht über das Bilanzjahr 2017 liegt eine Zeitreihe von regelmäßig veröffentlichten Emissionsbilanzen vor, die bis in das Jahr 1988 zurückreicht.

1 Problemstellung

Der vorliegende Bericht soll alle relevanten Schadstoffe umfassen, die durch Anlagen der österreichischen Zementindustrie mit Ofenbetrieb im Jahr 2017 freigesetzt wurden.

Darüber hinaus sollen

- die Produktionsdaten,
- die Einsatzmengen an konventionellen Energieträgern,
- > die Einsatzmengen an Ersatzbrennstoffen,
- der thermische und der elektrische Energieverbrauch,
- die Einsatzmengen an Primärrohstoffen,
- > die Einsatzmengen an Primärzumahlstoffen,
- die Einsatzmengen an Sekundärrohstoffen,
- die Einsatzmengen an Sekundärzumahlstoffen,

zusammenfassend dargestellt werden.

Die Einzelwerksergebnisse sollen, unter Wahrung der Vertraulichkeit werksspezifischer Einzelheiten, zu einer Gesamtbilanz der Branche zusammengeführt werden.

Zu Vergleichszwecken soll die Emissionsinventur 2017 um die Bilanzjahre 2012 bis 2016 ergänzt werden. Somit können sektorale Trendanalysen und Mittelwertbildungen auf einer breiteren Datenbasis abgestützt und Aussagequalitäten von weniger systematischen Einflußgrößen unabhängiger gemacht werden.

2 Datenerfassung

2.1 Erfaßte Schadstoffe

In der Emissionsinventur finden sich Angaben zu 26 Schadstoffen bzw. Schadstoffgruppen (Tabelle 2-1).

klassische Luftschadstoffe	metallische Spurenelemente*	klimarelevante Schadgase
Staubförmige Emissionen	Cadmium (Cd)	geogenes Kohlenstoffdioxid (CO ₂)
Stickstoffoxide (als NO ₂)	Thallium (TI)	pyrogenes Kohlenstoffdioxid (CO ₂)
Schwefeldioxid (SO ₂)	Beryllium (Be)	
Chlorverbindungen (als HCl)	Arsen (As)	
Fluorverbindungen (als HF)	Cobalt (Co)	
organischer Gesamtkohlenstoff (TOC)	Nickel (Ni)	
Kohlenstoffmonoxid (CO)	Blei (Pb)	
Ammoniak (NH₃)	Quecksilber (Hg)	
	Chrom (Cr)	
	Selen (Se)	
	Mangan (Mn)	
	Vanadium (V)	
	Zink (Zn)	
	Antimon (Sb)	
	Kupfer (Cu)	
	Zinn (Sn)	

Tabelle 2-1: erfaßte Schadstoffe

2.2 Erfassungszeitraum

Die vorliegende Emissionsinventur wurde für das Bilanzjahr 2017 erstellt und zu Vergleichszwecken mit den entsprechenden Daten für 2012 bis 2016 ergänzt.

2.3 Erfaßte Anlagen

Es wurden folgende neun Anlagen der österreichischen Zementindustrie mit betriebsbereiten Ofenanlagen in die Emissionsinventur aufgenommen:

- > Zementwerk Leube GmbH (Gartenau / Salzburg),
- Zementwerk Hatschek GmbH (Gmunden),
- ➤ Kirchdorfer Zementwerk Hofmann Ges.m.b.H. (Kirchdorf / Krems),
- Lafarge Zementwerke GmbH (Betriebsstandort: Mannersdorf),
- > Lafarge Zementwerke GmbH (Betriebsstandort: Retznei),
- Schretter & Cie GmbH & Co KG (Vils),
- > w&p Zement GmbH (Betriebsstandort: Peggau),
- > w&p Zement GmbH (Betriebsstandort: Wietersdorf),
- Wopfinger Baustoffindustrie GmbH (Waldegg).

Über wichtige anlagentechnische Gegebenheiten in österreichischen Zementwerken mit Ofenbetrieb berichtet Abbildung 2-1.

				Anla	agenspiegel mit 31.12.2017					
Betreiber	Standort	Ofentechnik	Klinkerkühler	Zement- mühlen	Abgasentstaubung	SNCR	SCR	SO ₂ - Abgas- Wäsche	Hg- Minderung	RTO
Zementwerk Leube GmbH	Gartenau	5-stufiger WT-DO mit Brennkammer und Kalzinator	Pendelrostkühler	2 KM	DO, KÜ, RM4 und RM5 in Schlauchfiltem	✓				
Zementwerk Hatschek GmbH	Gmunden	5-stufigerWT-DO	Satellitenkühler	3 KM	DO und KÜ in 2 E- Entstaubern in Serie	✓				
Kirchdorfer Zementwerk Hofmann Ges.m.b.H.	Kirchdorf	4- stufiger WT- DO mit Kalzinator	Pendelrostkühler	2 KM	DO und 2 MTA mit Schlauchfilter, KÜ mit E-Entstauber	(✓)	√*			√*
Lafarge Zementwerke GmbH	Mannersdorf	5- stufiger 2- strangiger WT- DO mit Kalzinator	2-strangiger WT- DO mit Kalzinator 2-teiliger Rostkühler		DO mit Schlauchfilter, KÜ mit E-Entstauber	(✓)	√			
w&p Zement GmbH	Peggau	Lepolverfahren	Rostkühler	3 KM	DO und KÜ im Schlauchfilter	1				
Lafarge Zementwerke GmbH	Retznei	4-stufigerWT-DO	Horizontalrostkühler	2 KM	E- Entstauber, Alkalibypass mit Schlauchfilter	1		V		
Schretter & Cie GmbH & Co KG	Vils	4-stufigerWT-DO	Rostkühler	2 KM	DO mit Schlauchfilter, KÜ mit E- Entstauber	1				
w&p Zement GmbH	Wietersdorf	5- stufiger WT- DO mit Kalzinator	Rostkühler	2 KM	DO und KÜ in einem Schlauchfilter	1			√**	√** *
Wopfinger Baustoffindustrie GmbH	Wopfing	5- stufiger WT- DO mit Kalzinator	2-teiliger Rostkühler	KM+2 RP	DO in Schlauchfilter, Schlauchfilter für KÜ	✓				√
Legende:	** ExMercury-Anlag	Drehrohrofen Elektrostaubabscheider Kugelmühle Klinkerkühler Mahltrocknungsanlage Rohmühle ge (Kopplungsverfahren einer thermischen Nachverbren ge zur Hg- Entfrachtung mit einem kohlenstoffhaltigen Ac - Betriebsstandort Wietersdorf hat im Oktober 2017 den	dsorbens; Inbetriebnahme		Rollenpresse Anlage zur selektiven, katalytischen Reduktion von Sticl Anlage zur selektiven, nichtkatalytischen Reduktion von regenerative, thermische Nachverbrennungsanlage Drehrohrofen mit Zyklonwärmetauscher Anlage in Reingasschaltung); Versuchsbetrieb ohne SCf	Stickstoffo	xiden	15; mit SCR-	- DeNOx ab 0	7.12.2015

Abbildung 2-1: Anlagenspiegel der österreichischen Zementwerke mit Ofenbetrieb (Stichtag: 31.12.2017)

3 Ergebnisse, numerische und graphische Darstellungen

Die in dieser Studie ausgewiesenen Daten sind kollektivierte Werte, welche für die Gesamtheit der österreichischen Zementindustrie gelten. Die kollektivierten Werte sind nicht geeignet auf einzelne österreichische Zementwerke und deren spezifische Daten umgelegt zu werden.

Konzentrationswerte die in den Meßberichten als unterhalb der Nachweisgrenze eines Meßgerätes bzw. eines Meßverfahrens ausgewiesen wurden, sind in der vorliegenden Emissionsinventur - einem "worst case" Szenario folgend - als mögliche und somit auch erreichbare Emissionskonzentrationswerte angenommen worden. Mit diesen Werten wurden gegebenenfalls die Frachtberechnungen durchgeführt.

Der vorliegende Bericht quantifiziert erstmals die Wärmeabgabe an externe Verbraucher durch Anlagen der österreichischen Zementindustrie.

Die Tabelle 3-1 informiert zusammenfassend über die Ergebnisse der Datenerhebung.

I Anlagedaten Anlagenzahl Österreichweit waren 2017 (2016) 2 (2) Lepolöfen mit 418.000 (418.000), 3 (3) WT-DO mit 1.385.000 (1.385.000) sowie 6 (6) WT-DO + Kalzinator mit 3.495.900 (3.495.900) t/a betriebsbereit. Klinkerkapazität / [t/a] Mit der 2017 (2016) installierten Gesamtanlagenkapazität von ca. 5.298.900 t/a (ca. 5.298.900 t/a) wurden die unter II angeführten Jahresmengen produziert.

GESAMTÜBERSICHT

Klinkerkapazität / [t/a]	ılagenkapazitä	ät von ca. 5.298	3.900 t/a (ca. s	5.298.900 t/a)	wurden die u	nter II angefüh	rten Jahresm	engen produzie	ert.										
II Produktionsdaten			2012			2013			2014			2015			2016			2017	
Rohmehleinsatz	[t/a]		4.942.334			4.858.175			4.842.710			5.033.733			5.093.970			5.057.751	
Klinkerproduktion	[t/a]		3.206.055			3.156.286			3.143.495		3.256.561		3.299.974		3.313.459				
Zementproduktion	[t/a]		4.455.162			4.384.876			4.434.531			4.611.810			4.776.936			4.879.639	
Ofenbetriebsstunden ^{a)}	[h _{OB} /a]		54.270,5			53.857,5			54.888,0			56.412,0			56.872,0			55.290,0	
Rohmehlfaktor	[t _{Rm} /t _{KI}]		1,542			1,539			1,541			1,546			1,544			1,526	
(korrigierter*) Klinkerfaktor	[t _{KI} /t _{Ze}]	0,703*	0,720		0,702*	0,720		0,698*	0,709		0,702*	0,706		0,705*	0,691		0,704*	0,679	
III Konventionelle Energieträger (KET)			2012			2013			2014			2015			2016			2017	
		Hu / [MJ/kg]	[t/a]	[GJ/a]	Hu / [MJ/kg]	[t/a]	[GJ/a]	Hu / [MJ/kg]	[t/a]	[GJ/a]	Hu / [MJ/kg]	[t/a]	[GJ/a]	Hu / [MJ/kg]	[t/a]	[GJ/a]	Hu / [MJ/kg]	[t/a]	[GJ/a]
A) Steinkohle		30,00	42.210	1.266.287	29,39	34.233	1.006.012	29,85	29.918	893.122	30,27	28.825	872.592	29,92	20.960	627.187	30,23	20.335	614.753
B) Braunkohle		21,75	56.770	1.234.974	21,87	49.615	1.085.133	21,91	47.125	1.032.699	22,15	45.989	1.018.658	22,02	48.379	1.065.175	21,96	48.625	1.067.651
C) Heizöl L (0,2 m% S)		41,70	311	12.967	41,70	226	9.415	41,70	254	10.594	41,70	233	9.712	41,70	508	21.180	41,70	394	16.445
D) Heizöl M (0,6 m% S)			0	0		0	0		0	0		0	0		0	0		0	0
E) Heizöl S (1,0-3,5 m% S)		40,80	811	33.095	40,30	1.677	67.581	40,35	973	39.252	40,03	2.405	96.275	40,14	2.813	112.927	39,06	2.061	80.489
F) Erdgas ^{b)} / [1000m ³ (Vn)/a]; Hu	/ [MJm ⁻³ (Vn)]	36,00	4.543,215	163.556	36,00	2.619,287	94.294	36,00	1.872,866	67.423	36,00	1.867,632	67.235	36,22	3.021,479	109.426	36,23	2.720,298	98.554
J) Petrolkoks		33,79	30.325	1.024.828	30,76	31.465	967.791	31,14	29.543	919.938	31,08	27.946	868.661	30,48	28.037	854.711	30,93	18.507	572.489
G) sonstige (Heizöl EL, Anthrazi	t)	42,70	230	9.832	42,70	933	39.824	42,70	386	16.500	42,70	291	12.445	42,70	330	14.086	42,70	345	14.713
Summe KET			133.888	3.745.538		120.011	3.270.051		109.531	2.979.528		107.017	2.945.578		103.176	2.804.693		92.201	2.465.094
IV Ersatzbrennstoffe (EBS)			2012			2013			2014			2015			2016			2017	
		Hu / [MJ/kg]	[t/a]	[GJ/a]	Hu / [MJ/kg]	[t/a]	[GJ/a]	Hu / [MJ/kg]	[t/a]	[GJ/a]	Hu / [MJ/kg]	[t/a]	[GJ/a]	Hu / [MJ/kg]	[t/a]	[GJ/a]	Hu / [MJ/kg]	[t/a]	[GJ/a]
H) Altreifen		27,15	37.305	1.012.954	28,63	40.245	1.152.389	28,84	47.903	1.381.458	29,33	54.242	1.590.979	29,66	56.143	1.665.140	29,88	58.988	1.762.265
I) Kunststoffabfälle		19,53	273.733	5.346.966	19,16	277.909	5.325.577	19,82	293.502	5.816.551	19,40	304.221	5.900.871	19,69	316.107	6.225.366	19,50	324.780	6.333.354
K) Altöl		32,36	6.670	215.851	34,76	5.935	206.304	29,79	7.574	225.607	32,85	10.890	357.733	33,26	16.131	536.588	33,40	13.847	462.473
L) Lösungsmittel		24,09	16.420	395.618	22,48	17.370	390.480	24,23	16.696	404.510	25,42	19.756	502.179	27,63	23.502	649.257	26,69	23.761	634.164
M) landwirtschaftliche Rückständ	de	16,90	5.654	95.540	16,91	3.548	59.995	16,91	1.492	25.223	16,91	325	5.492	16,91	520	8.798	16,91	1.204	20.359
N) Papierfaserreststoff		4,56	36.800	167.745	4,72	46.967	221.844	5,06	38.778	196.217	4,85	42.227	204.779	4,83	35.719	172.523	4,89	36.728	179.600
O) sonstige		10,98	79.676	874.722	13,15	91.720	1.205.806	12,66	87.664	1.109.755	13,44	61.668	828.524	14,15	60.273	852.730	17,09	50.550	863.656
Summe EBS			456.259	8.109.396		483.694	8.562.395		493.609	9.159.320		493.329	9.390.558		508.395	10.110.402		509.857	10.255.872
V Thermischer Energieeinsatz**			2012			2013			2014			2015			2016			2017	
a) Σ Energieeinsatz KET	[GJ/h _{OB}]		69,0			60,7			54,3			52,2			49,3			44,6	
b) Σ Energieeinsatz EBS	b) Σ Energieeinsatz EBS [GJ/h _{OB}]		149,4			159,0			166,9			166,5			177,8			185,5	
Summe a) u. b)	Summe a) u. b) [GJ/h _{OB}] 218,4				219,7			221,2			218,7			227,1			230,1		
EBS-Anteil an (III+IV) [%] 68,41				72,36			75,45		76,12				78,28			80,62			
spez. therm. Energieeinsatz [GJ/t _{Klinker}] 3,698		3,749			3,862			3,788			3,914			3,839					
VI Sekundärrohstoffe (SRS) 2012		2013			2014		2015			2016			2017						
diverse Schlacken [t/a] 43.993		30.223		35.855		47.079		36.863		34.745									
Gießereialtsand [t/a]			24.776			25.770			31.868			27.957			31.695			36.052	
Summe SRS / sonstige SRS	[t/a]	620.606	551.836		663.189	607.196		680.941	613.218		610.816	535.781		628.296	559.739		699.305	628.507	

VI	Sekundärzumahlstoffe (SZS)			2012			2013			2014			2015			2016			2017	
	Hochofenschlacke	[t/a]		630.513			647.120			681.832			744.590			774.461			774.505	
	REA - Gips	[t/a]		48.275			51.104			52.150			45.411			48.716			48.081	
	Flugasche	[t/a]		143.275			121.666			122.997			126.974			127.453			119.064	
	Summe SZS / sonstige SZS	[t/a]	909.461	87.399		951.489	131.599		974.908	117.929		1.043.676	126.701		1.066.573	115.943		1.016.096	74.446	
F	,	ربعا	303.401	07.555		331.409	101.000		314.300	117.525		1.043.010	120.701		1.000.073	110.040		1.010.030	7 7.770	
VII	Abgasparameter			2012			2013			2014			2015			2016			2017	
	BezO ₂ / O ₂ gemessen	[Vol%]	10,00		11,26	10,00		11,44	10,00		11,44	10,00		11,81	10,00		11,85	10,00		11,36
Abgasnormvolumen V _(tr.,Vn,bez.) [1000m ³ (Vn)/a] 7.636.237					7.569.484			7.521.174			7.395.121			7.682.283			7.660.014			
				2012			2013			2014			2015			2016			2017	
D	Emissionsrelevante Daten		E-faktor	Massenstrom	E-faktor															
			[g/t _{Ze}]	[t/a]	[g/t _{Ki}]	[g/t _{Ze}]	[t/a]	[g/t _{Ki}]	[g/t _{Ze}]	[t/a]	[g/t _{Ki}]	[g/t _{Ze}]	[t/a]	[g/t _{KI}]	[g/t _{Ze}]	[t/a]	[g/t _{KI}]	[g/t _{Ze}]	[t/a]	[g/t _{Ki}]
1	Staub (TSP) (1) (3)		4,88	21,739	6,78	6,18	27,087	8,58	4,88	21,643	6,88	5,12	23,592	7,24	4,97	23,747	7,20	5,57	27,172	8,20
2	Stickstoffoxide (als NO ₂)		582,67	2.595,899	809,69	600,68	2.633,924	834,50	550,30	2.440,341	776,31	483,78	2.231,087	685,11	451,42	2.156,426	653,47	430,82	2.102,258	634,46
3	Schwefeldioxid (SO ₂)		41,62	185,412	57,83	55,23	242,158	76,72	71,80	318,389	101,28	59,49	274,342	84,24	54,74	261,498	79,24	59,89	292,225	88,19
_	Cadmium (Cd)		0,001354	0,006030	0,001881	0,001550	0,006795	0,002153	0,002184	0,009687	0,003082	0,000877	0,004043	0,001242	0,001327	0,006337	0,001920	0,001294	0,006313	0,001905
5	Thallium (TI)		0,001043	0,004647	0,001449	0,001013	0,004442	0,001407	0,001035	0,004592	0,001461	0,000936	0,004317	0,001326	0,000908	0,004336	0,001314	0,001279	0,006241	0,001884
6	Beryllium (Be)		0,002443	0,010882	0,003394	0,002457	0,010771	0,003413	0,002342	0,010385	0,003304	0,002450	0,011298	0,003469	0,002381	0,011375	0,003447	0,002450	0,011955	0,003608
Su	mme 4-6		0,004839	0,021559	0,006725	0,005019	0,022008	0,006973	0,005562	0,024663	0,007846	0,004263	0,019658	0,006037	0,004616	0,022048	0,006681	0,005023	0,024510	0,007397
7	Arsen (As)		0,001250	0,005567	0,001736	0,001005	0,004409	0,001397	0,001004	0,004450	0,001416	0,000974	0,004493	0,001380	0,001085	0,005185	0,001571	0,001619	0,007901	0,002385
8	Cobalt (Co)		0,000952	0,004241	0,001323	0,000937	0,004110	0,001302	0,000971	0,004308	0,001370	0,000963	0,004440	0,001363	0,000882	0,004213	0,001277	0,001336	0,006520	0,001968
9	Nickel (Ni)		0,005636	0,025109	0,007832	0,007084	0,031062	0,009841	0,012707	0,056348	0,017925	0,013175	0,060760	0,018658	0,006465	0,030884	0,009359	0,009481	0,046265	0,013963
10	Blei (Pb)		0,009635	0,042928	0,013390	0,016440	0,072089	0,022840	0,009341	0,041423	0,013177	0,005203	0,023995	0,007368	0,006249	0,029850	0,009046	0,006666	0,032529	0,009817
Su	mme 7-10		0,017473	0,077844	0,024280	0,025467	0,111670	0,035380	0,024023	0,106529	0,033889	0,020315	0,093687	0,028769	0,014681	0,070132	0,021252	0,019103	0,093215	0,028132
11	Quecksilber (Hg)		0,026367	0,117469	0,036640	0,033791	0,148171	0,046945	0,035604	0,157886	0,050226	0,028466	0,131281	0,040313	0,020341	0,097165	0,029444	0,026960	0,131555	0,039703
12	Chrom (Cr)		0,006005	0,026752	0,008344	0,009736	0,042693	0,013526	0,021059	0,093387	0,029708	0,016760	0,077295	0,023735	0,012586	0,060122	0,018219	0,018013	0,087896	0,026527
13	Selen (Se)		0,000228	0,001017	0,000317	0,000206	0,000902	0,000286	0,000201	0,000890	0,000283	0,000201	0,000927	0,000285	0,000293	0,001399	0,000424	0,000296	0,001447	0,000437
14	Mangan (Mn)		0,008321	0,037069	0,011562	0,006785	0,029749	0,009425	0,018615	0,082548	0,026260	0,011867	0,054728	0,016805	0,011665	0,055723	0,016886	0,011791	0,057538	0,017365
15	Vanadium (V)		0,001946	0,008668	0,002704	0,001529	0,006703	0,002124	0,001152	0,005107	0,001625	0,001040	0,004798	0,001473	0,001275	0,006088	0,001845	0,001513	0,007382	0,002228
	Zink (Zn)		0,022312	0,099406	0,031006	0,021156	0,092769	0,029392	0,021130	0,093704	0,029809	0,021294	0,098205	0,030156	0,020615	0,098476	0,029841	0,023195	0,113181	0,034158
Su	mme 11-16		0,065178	0,290380	0,090573	0,073203	0,320987	0,101698	0,097760	0,433520	0,137910	0,079629	0,367233	0,112767	0,066774	0,318974	0,096660	0,081768	0,398998	0,120417
17	Antimon (Sb)		0,000974	0,004341	0,001354	0,000937	0,004110	0,001302	0,000971	0,004308	0,001370	0,000887	0,004089	0,001256	0,000900	0,004300	0,001303	0,001235	0,006027	0,001819
-	Kupfer (Cu)		0,006372	0,028388	0,008854	0,010182	0,044645	0,014145	0,005988	0,026556	0,008448	0,007365	0,033967	0,010430	0,005439	0,025982	0,007873	0,008762	0,042756	0,012904
_	Zinn (Sn)		0,001493	0,006650	0,002074	0,001321	0,005792	0,001835	0,001302	0,005772	0,001836	0,001010	0,004656	0,001430	0,000890	0,004250	0,001288	0,001283	0,006262	0,001890
Su	mme 26-28		0,008839	0,039379	0,012283	0,012440	0,054547	0,017282	0,008261	0,036635	0,011654	0,009262	0,042712	0,013116	0,007229	0,034532	0,010464	0,011281	0,055045	0,016613
	mme Spurenelemente (4-16)		0,087490	0,389784	0,121577	0,103689	0,454665	0,144051	0,127344	0,564713	0,179645	0,104206	0,480579	0,147572	0,086071	0,411155	0,124593	0,105894	0,516723	0,155947
Su	mme Spurenelemente (4-16 und 2	26-28)	0,096329	0,429163	0,133860	0,116129	0,509212	0,161333	0,135606	0,601348	0,191299	0,113468	0,523291	0,160688	0,093300	0,445687	0,135058	0,117174	0,571768	0,172559
	chlorhältige Verbindungen (als H		2,846	12,680	3,955	2,928	12,841	4,068	4,049	17,955	5,712	2,985	13,765	4,227	4,205	20,088	6,087	4,491	21,914	6,614
-	fluorhältige Verbindungen (als HF		0,164	0,729	0,227	0,180	0,791	0,250	0,179	0,792	0,252	0,205	0,944	0,290	0,192	0,918	0,278	0,192	0,938	0,283
22	organischer Gesamtkohlenstoff (TOC)	52,962	235,955	73,597	61,318	268,870	85,185	50,738	225,001	71,577	50,733	233,973	71,847	42,038	200,814	60,853	42,179	205,817	62,115
23	Kohlenstoffmonoxid (CO)		3.672,3	16.360,48	5.103,0	3.734,3	16.374,28	5.187,8	3.727,3	16.528,78	5.258,1	2.971,5	13.704,21	4.208,2	2.362,9	11.287,48	3.420,5	1.577,0	7.695,02	2.322,4
24	Ammoniak (NH ₃)	-	19,205	85,562	26,688	14,458	63,399	20,086	20,916	92,754	29,507	24,822	114,474	35,152	13,494	64,462	19,534	17,198	83,919	25,327
25	Kohlenstoffdioxid (CO ₂) ⁽²⁾		615.725	2.743.153	855.616	615.678	2.699.674	855.333	609.335	2.702.117	859.590	602.868	2.780.312	853.757	591.122	2.823.753	855.689	572.952	2.795.801	843.771

⁽²⁾ nach EZG verifizierte CO₂-Gesamtemission (inkl. "klimaneutrales" CO₂); (3) Total Suspended Particulates (TSP) aus den Ofenlinien

(1) ohne Staubemissionen aus "sonstigen definierten Quellen" (Zementverordnung §5 Z.3) *= Klinkerverbrauch/Zementproduktion ** alle Einsatzbereiche

a) alle Betriebszustände

b) $\rho_{(EG)}$ =0,7112kg/m³

3.1 Produktionsstatistik

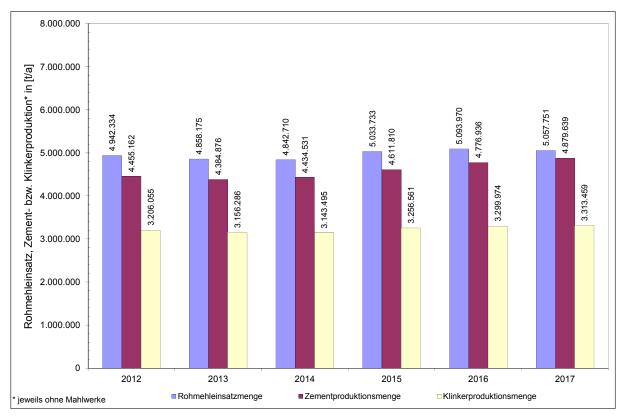


Abbildung 3-1: Rohmehleinsatzmenge, Klinkerproduktionsmenge und Zementproduktionsmenge der österreichischen Zementindustrie im Beobachtungszeitraum 2012 bis 2017 (ohne Mahlwerke)

Abbildung 3-2: Klinkerfaktor und Rohmehlfaktor im Beobachtungszeitraum 2012 bis 2017

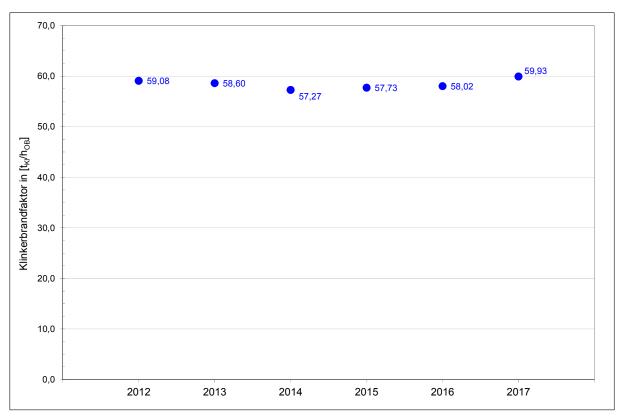


Abbildung 3-3: Entwicklung des Klinkerbrandfaktors / [t_K/h_{OB}] in den Anlagen der österreichischen Zementindustrie im Beobachtungszeitraum 2012 bis 2017

3.2 Brennstoffstatistik

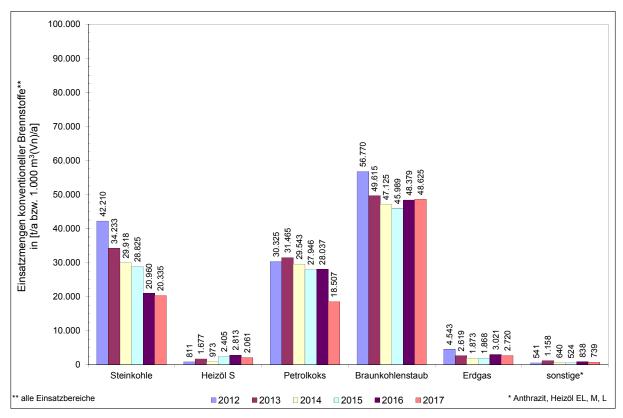


Abbildung 3-4: Einsatzmengen konventioneller Brennstoffe in der österreichischen Zementindustrie im Beobachtungszeitraum 2012 bis 2017

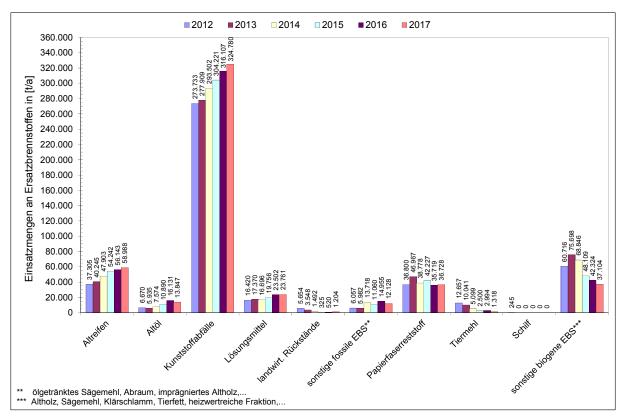


Abbildung 3-5: Einsatzmengen von Ersatzbrennstoffen (EBS) in Anlagen der österreichischen Zementindustrie im Beobachtungszeitraum 2012 bis 2017

3.3 Energiestatistik

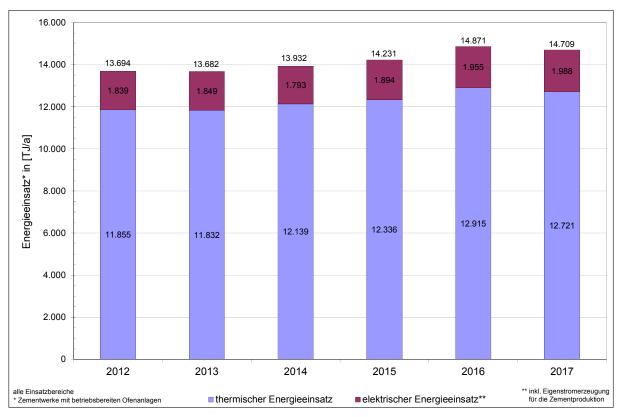


Abbildung 3-6: Entwicklung des thermischen und elektrischen Energieeinsatzes in österreichischen Zementwerken mit eigener Klinkererzeugung im Beobachtungszeitraum 2012 bis 2017

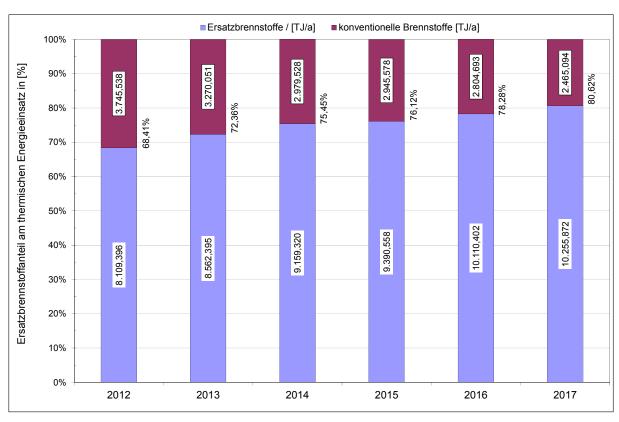


Abbildung 3-7: Ersatzbrennstoffenergieanteil am thermischen Energieeinsatz (Substitutionsgrad) in Anlagen der österreichischen Zementindustrie für den Beobachtungszeitraum 2012 bis 2017

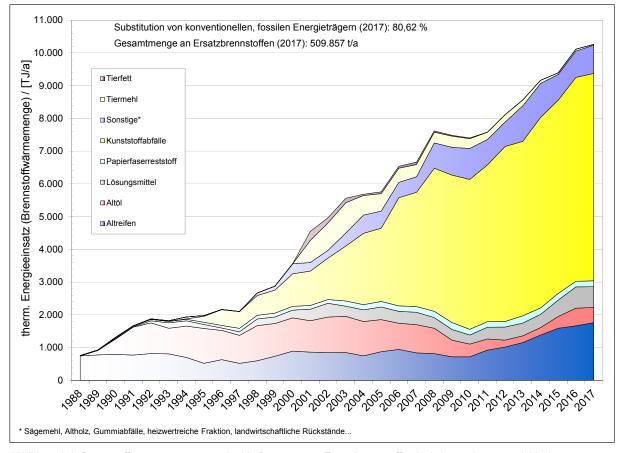


Abbildung 3-8: Brennstoffwärmemengen aus der Verfeuerung von Ersatzbrennstoffen in Anlagen der österreichischen Zementindustrie (ohne Mahlwerke) im Beobachtungszeitraum 1988 bis 2017

Abbildung 3-9: auf die Tonne Zement bzw. auf die Tonne Klinker bezogener spezifischer Brennstoffenergieeinsatz in Anlagen der österreichischen Zementindustrie für den Beobachtungszeitraum 2012 bis 2017

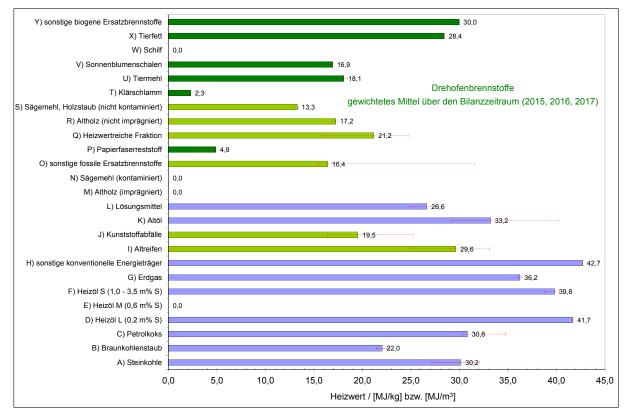


Abbildung 3-10: über den Bilanzzeitraum 2015, 2016 und 2017 mengengewichtete Mittelwerte von Heizwerten unterschiedlicher Drehofenbrennstoffe (im Einsatzzustand) mit werksspezifischen Minimal- und Maximalwerten



Abbildung 3-11: mittlerer spezifischer Energieeinsatz je Tonne Zement in Anlagen der österreichischen Zementindustrie (ohne Mahlwerke) im Vergleichszeitraum 2012 bis 2017

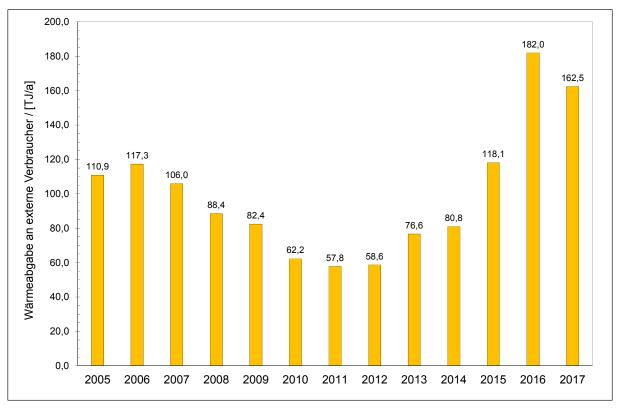


Abbildung 3-12: Wärmeabgabe an externe Verbraucher aus Anlagen der österreichischen Zementindustrie im Beobachtungszeitraum 2005 bis 2017

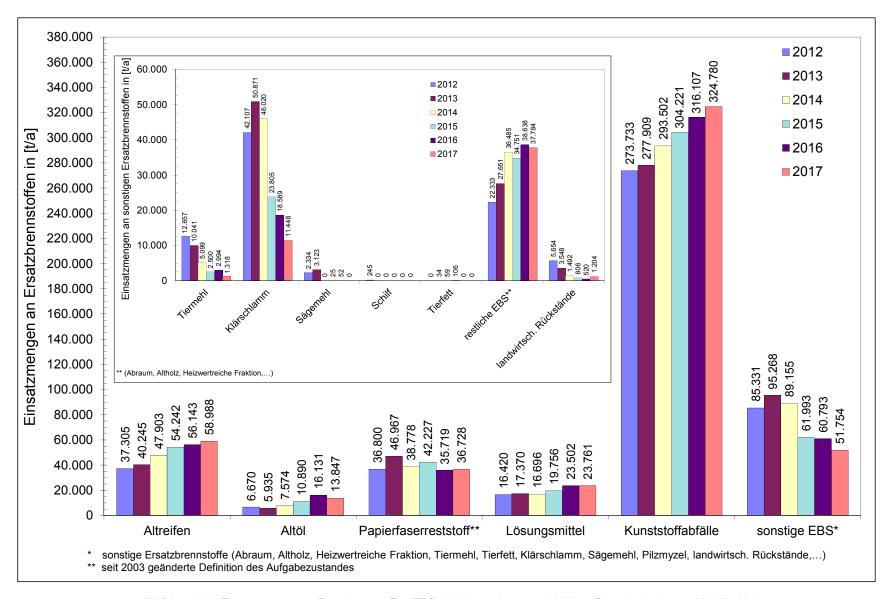


Abbildung 3-13: Einsatzmengen von Ersatzbrennstoffen (EBS) in Anlagen der österreichischen Zementindustrie von 2012 bis 2017

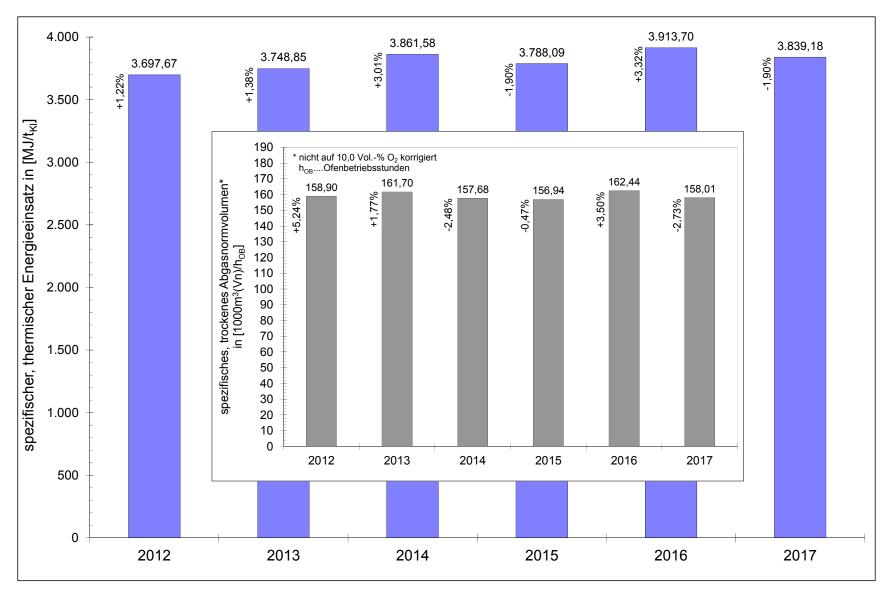


Abbildung 3-14: Entwicklung des spezifischen Energieeinsatzes (exklusive elektrischer Energieeinsatz) und Darstellung des spezifischen, trockenen Gesamtabgasnormvolumens (nicht auf 10,0 Vol.-% O₂ bezogen) in österreichischen Zementwerken mit eigener Klinkererzeugung jeweils für den Zeitraum 2012 bis 2017

3.4 Rohstoff- und Zumahlstoffstatistik

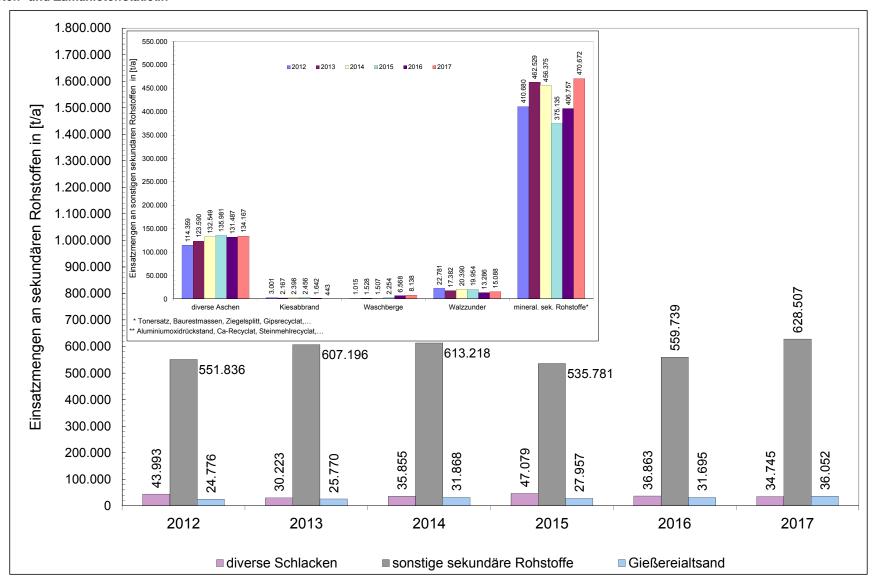


Abbildung 3-15: Einsatzmengen sekundärer Rohstoffe in Anlagen der österreichischen Zementindustrie (ohne Mahlwerke) im Zeitraum von 2012 bis 2017

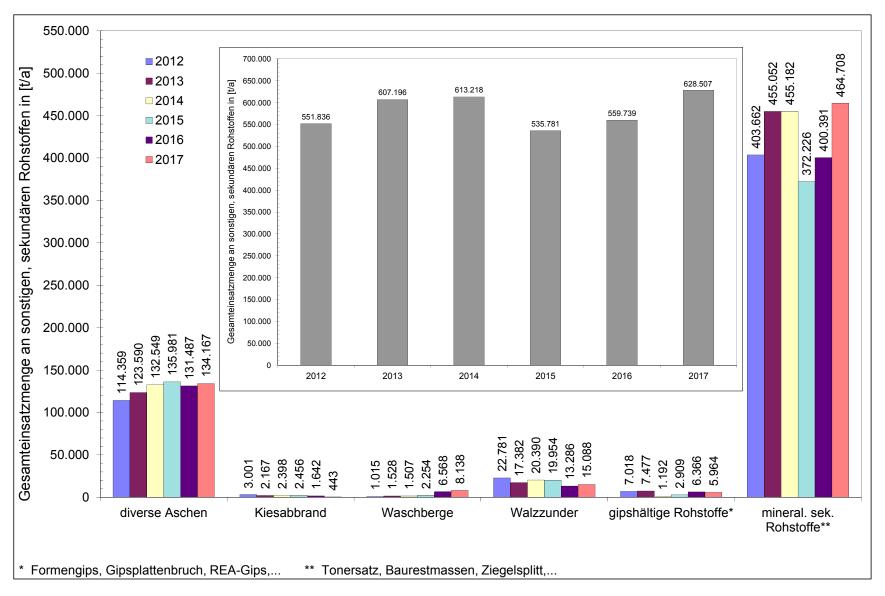


Abbildung 3-16: Spezifizierung der im Zeitraum von 2012 bis 2017 in Anlagen der österreichischen Zementindustrie (ohne Mahlwerke) verwendeten sonstigen sekundären Rohstoffmassenströme

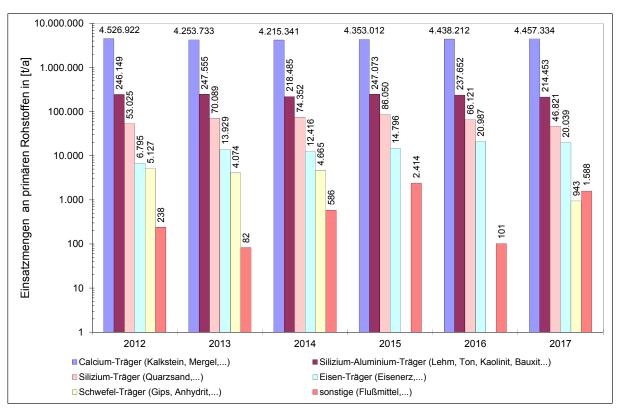


Abbildung 3-17: Einsatzmengen primärer Rohstoffe in Anlagen der österreichischen Zementindustrie im Zeitraum von 2012 bis 2017 (ohne Mahlwerke)

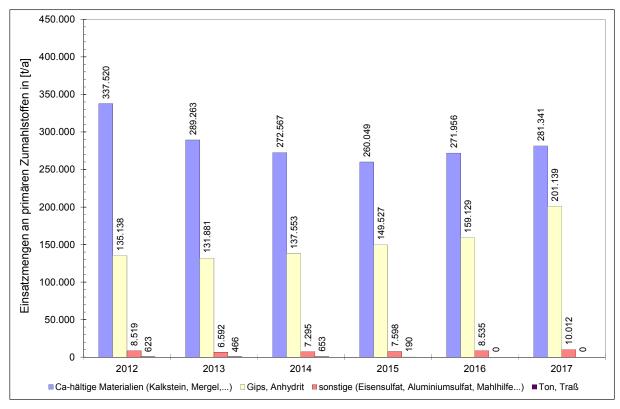


Abbildung 3-18: Einsatzmengen primärer Zumahlstoffe in Anlagen der österreichischen Zementindustrie von 2012 bis 2017 (ohne Mahlwerke)

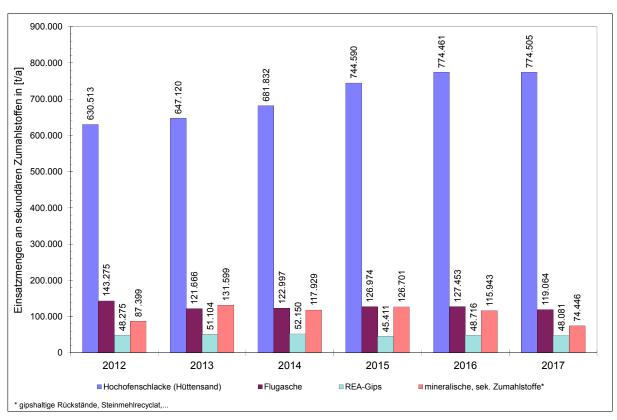


Abbildung 3-19: Einsatzmengen sek. Zumahlstoffe in der österreichischen Zementindustrie (2012 - 2017, ohne Mahlwerke)

3.5 Emissionsstatistik

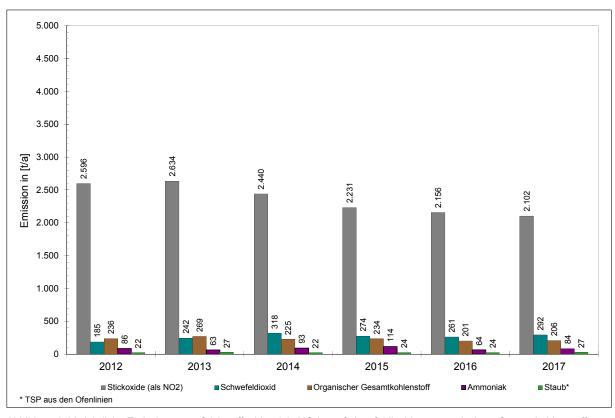


Abbildung 3-20: jährliche Emissionen an Stickstoffoxiden (als NO₂), an Schwefeldioxid, an organischem Gesamtkohlenstoff, an Ammoniak und an Staub (TSP aus Ofenlinien) aus Anlagen der österreichischen Zementindustrie (ohne Mahlwerke) im Zeitraum von 2012 bis 2017

Abbildung 3-21: zeitlicher Verlauf der jährlichen, spezifischen Emissionsmassenströme (Emissionsfaktoren) für Kohlenstoffmonoxid, für Stickstoffoxide (als NO₂), für Schwefeldioxid, für Ammoniak und für Staub (TSP aus Ofenlinien), jeweils bezogen auf 1 t Klinker (2012 - 2017, ohne Mahlwerke)

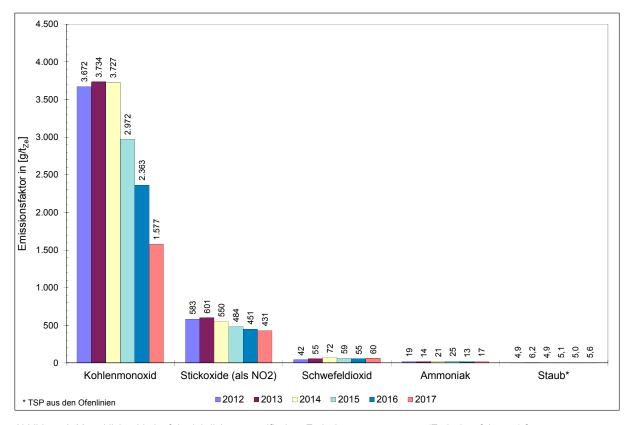


Abbildung 3-22: zeitlicher Verlauf der jährlichen, spezifischen Emissionsmassenströme (Emissionsfaktoren) für Kohlenstoffmonoxid, für Stickstoffoxide (als NO₂), für Schwefeldioxid, für Ammoniak und für Staub (TSP aus Ofenlinien), jeweils bezogen auf 1 t Zement (2012 - 2017, ohne Mahlwerke)

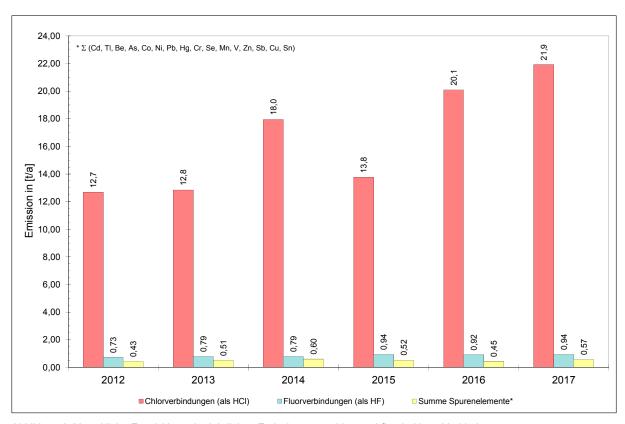


Abbildung 3-23: zeitliche Entwicklung der jährlichen Emissionen an chlor- und fluorhältigen Verbindungen
(ausgewiesen als HCl bzw. HF) sowie der jährlichen Gesamtemissionen an Spurenelementen jeweils für den
Zeitraum 2012 bis 2017 (ohne Mahlwerke)

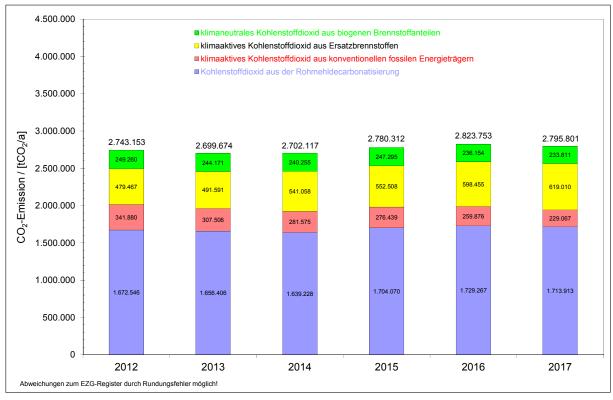


Abbildung 3-24: zeitliche Entwicklung der jährlichen Emissionen an Kohlenstoffdioxid aus Anlagen der österreichischen Zementindustrie (exklusive Mahlwerke) im Beobachtungszeitraum 2012 bis 2017 (nach EZG)

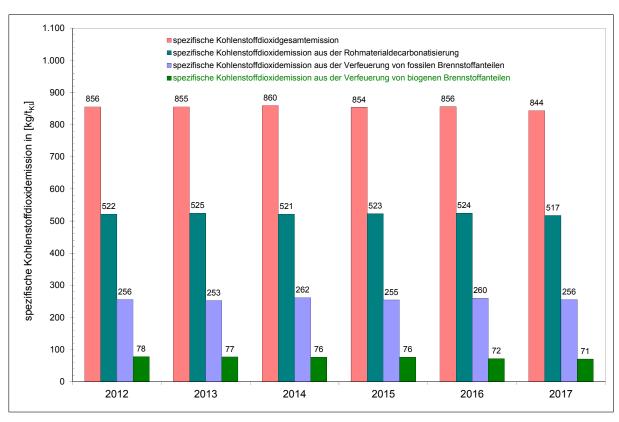


Abbildung 3-25: auf die Tonne Klinker bezogene, spezifische CO₂-Emissionen (mit biogenen CO₂-Emissionen) aus Anlagen der österreichischen Zementindustrie im Beobachtungszeitraum 2012 bis 2017 (nach EZG)

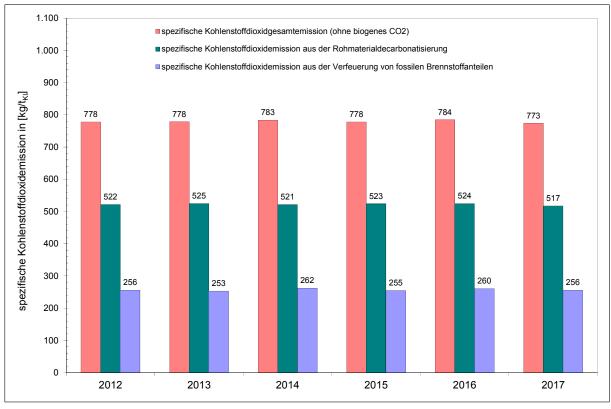


Abbildung 3-26: auf die Tonne Klinker bezogene, spezifische CO₂-Emissionen (ohne biogene CO₂-Emissionen) aus Anlagen der österreichischen Zementindustrie im Beobachtungszeitraum 2012 bis 2017 (nach EZG)

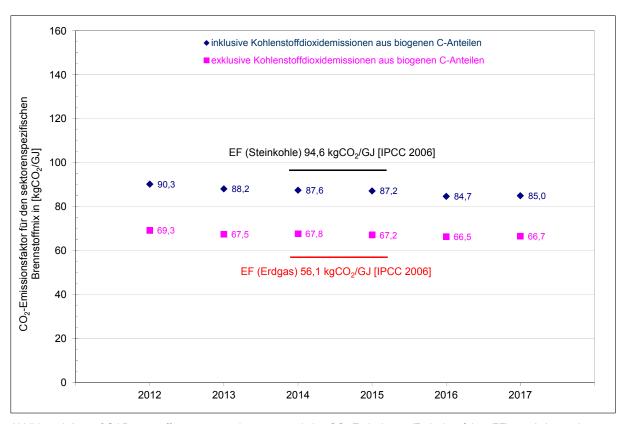


Abbildung 3-27: auf GJ Brennstoffwärmemenge bezogene, relative CO₂-Emissionen (Emissionsfaktor EF) aus Anlagen der österreichischen Zementindustrie im Beobachtungszeitraum 2012 bis 2017 (nach EZG)

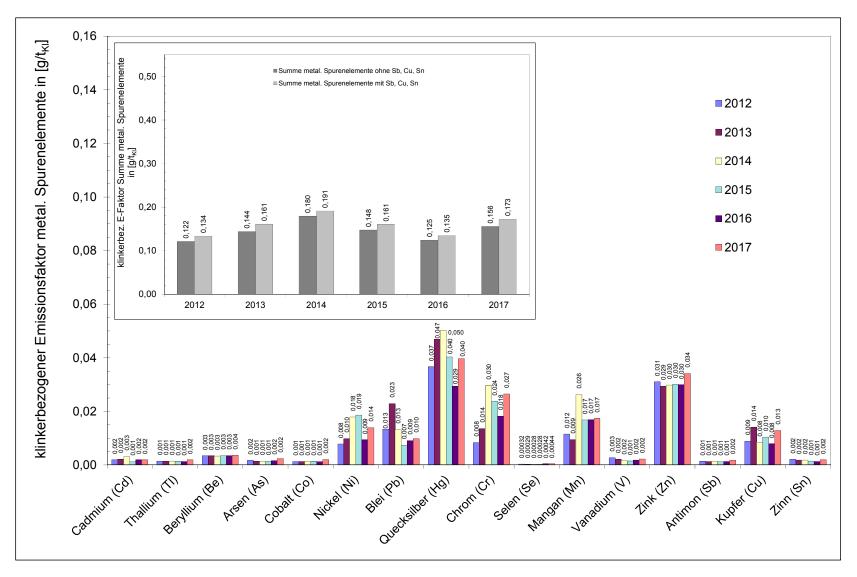
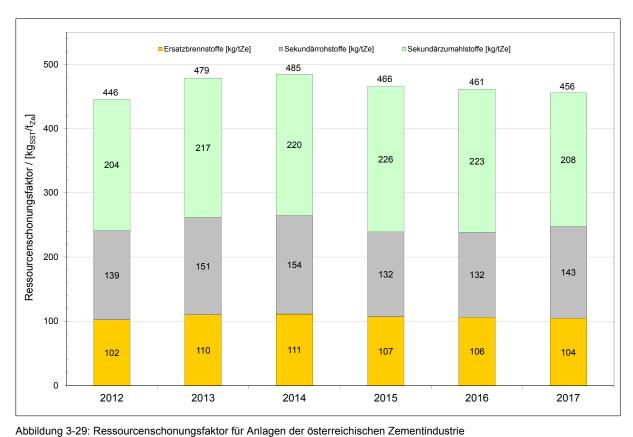



Abbildung 3-28: klinkerbezogene Emissionsfaktoren diverser metallischer Spurenelemente aus Anlagen der österreichischen Zementindustrie (ohne Mahlwerke) für den Zeitraum von 2012 bis 2017

im Vergleichszeitraum 2012 bis 2017

(Der Ressourcenschonungsfaktor verdeutlicht jene Menge an Ersatzbrennstoffen, Sekundärrohstoffen und Sekundärzumahlstoffen, die bei der Erzeugung einer Tonne Zement verwendet werden.)

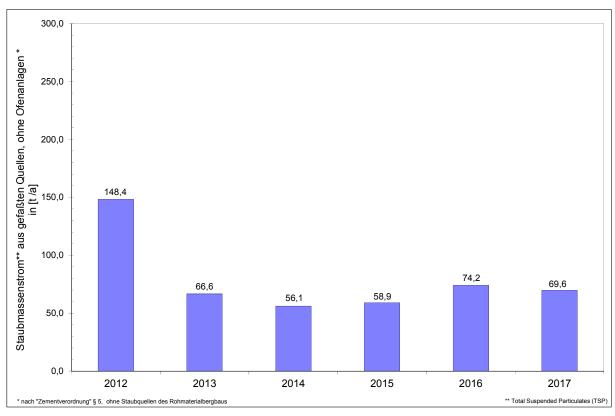


Abbildung 3-30: Staubmassenstrom (TSP) aus "gefaßten Quellen, ausgen. Ofenanlagen" nach "Zementverordnung" § 5 für Anlagen der österreichischen Zementindustrie (exklusive Mahlwerke) im Beobachtungszeitraum 2012 bis 2017

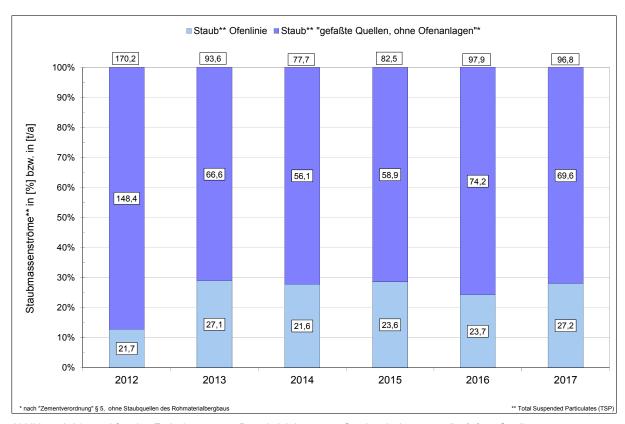


Abbildung 3-31: staubförmige Emissionen unter Berücksichtigung von Staubemissionen aus "gefaßten Quellen, ausgenommen Ofenanlagen" nach "Zementverordnung" § 5 für Anlagen der österreichischen Zementindustrie (exklusive Mahlwerke) im Beobachtungszeitraum 2012 bis 2017

4 Kurzkommentar zu den Ergebnissen

4.1 Anlage- und Produktionsdaten

Kennzahl -	2016		2017	
Kennzani		[%]		[%]
inatalliarta Vlinkarkanazitzt [t/a]	5.298.900		5.298.900	
installierte Klinkerkapazität [t/a]		100,00		0,00
Rohmehleinsatz [t/a]	5.093.970		5.057.751	
Rollinellelisatz [va]		100,00		-0,71
Klinkerproduktion [t/a]	3.299.974		3.313.459	
Trilines produktion [ba]		100,00		0,41
Zementproduktion [t/a]	4.776.936		4.879.639	
		100,00		2,15
Ofenbetriebsstunden ^{a)} [h _{OB} /a]	56.872,0		55.290,0	
^{a)} alle Drehrohrofenbetriebszustände		100,00		-2,78
Rohmehlfaktor [t _{Rm} /t _{Kl}]	1,544		1,526	
TOTH TETHIAKOT [IRm/IK]]		100,00		-1,12
Klinkerfaktor ^{b)} [t_{Kl}/t_{Ze}]	0,705		0,704	
b) = Klinkerverbrauch/Zementproduktion		100,00		-0,13
spezifischer thermischer Energieeinsatz [GJ/t _{KI}]	3,914		3,839	
Spezinscher thermischer Energieemsatz [OS/tki]		100,00		-1,90
spezifischer elektrischer Energieeinsatz [kWh/t _{Ze}]	113,695		113,155	
Spezinsoner ciektrisoner Energieensatz [kwinze]		100,00		-0,47
Klinkerbrandfaktor [t _{Kl} /h _{OB}]	58,025		59,929	
Killikelbialidiaktol [tkl/ilioB]		100,00		3,28
Abgasfaktor ^{c)} [m ³ (Vn)/h _{OB}]	162.442		158.009	
c) nicht auf 10 Vol% O ₂ bezogen		100,00		-2,73
spezifische Abgasmenge ^{d)} [m³(Vn)/t _{Kl}]	2.800		2.637	
^{d)} nicht auf 10 Vol% O ₂ bezogen		100,00		-5,82
Anteil Ersatzbrennstoffe am thermischen Gesamtenergieeinsatz [%]	78,28		80,62	
Anton Libatzbieninstone am thermischen Gesamtenergieensatz [70]		100,00		2,99
Ressourcenschonungsfaktor ^{e)} [kg/t _{Ze}]	461,2		456,0	
e) Ersatzstoffmenge bei der Produktion 1 t Zement		100,00		-1,13

Tabelle 4-1: Produktionsdaten für Anlagen der österreichischen Zementindustrie im Jahresvergleich 2017 mit 2016

Im Jahresvergleich 2017 mit 2016 blieb die installierte Klinkerkapazität in Anlagen der österreichischen Zementindustrie mit ca. 5,2989 Millionen Jahrestonnen unverändert (Tabelle 4-1).

Die Klinkerproduktionsmenge erhöhte sich im Jahr 2017 gegenüber dem Vorjahr um ca. 0,4 % auf ca. 3,31 Millionen Jahrestonnen.

Die Zementproduktionsmenge erhöhte sich im Jahr 2017 gegenüber dem Vorjahr um ca. 2,2 % auf ca. 4,88 Millionen Jahrestonnen.

Der Klinkerfaktor verringerte sich im Jahresvergleich um ca. 0,1 % von 0,705 auf 0,704 t_{KI}/t_{Ze}.

Die Anzahl an Ofenbetriebsstunden verringerte sich im Jahresvergleich um ca. 2,8 % auf 55.290 Stunden.

Der Klinkerbrandfaktor verbesserte sich von ca. $58,0~t_{KI}/h_{OB}$ im Jahr 2016 um ca. 3,3~% auf ca. $59,9~t_{KI}/h_{OB}$ im Jahr 2017.

Für die Produktion einer Tonne Klinker wurde im Jahr 2017 mit ca. 3,84 GJ um ca. 1,9 % weniger thermische Energie (Brennstoffwärmeverbrauch) eingesetzt als im Jahr 2016.

Für die Produktion einer Tonne Zement wurde im Jahr 2017 mit ca. 113,2 kWh um ca. 0,5 % weniger elektrische Energie verbraucht als im Jahr 2016.

Die auf die Tonne produzierten Klinker bezogene spezifische Abgasmenge verringerte sich 2017 gegenüber dem Vorjahr um ca. 5,8 % auf ca. 2.637 m³(Vn).

Der Anteil an Brennstoffwärmemenge erzeugt aus Ersatzbrennstoffen am Gesamtwärmebedarf, erhöhte sich von ca. 78,28 % im Jahr 2016 auf ca. 80,62 % im Jahr 2017. Dies entspricht einem Anstieg um ca. 3,0 %.

Im Jahresvergleich 2017 mit 2016 verringerten sich die Einsatzmengen an Ersatzstoffen (i.e. Ersatzbrennstoffe, Sekundärzumahlstoffe), die für die Produktion einer Tonne Zement verwendet wurden (Ressourcenschonungsfaktor), um ca. 1,1 % auf ca. 456,0 kg.

Im Jahr 2017 wurden aus Anlagen der österreichischen Zementindustrie ca. 162,5 TJ Wärmeenergie an externe Verbraucher ausgekoppelt. Dies entspricht ca. 1,3 % des jährlichen Gesamtwärmebedarfs von ca. 12.721TJ (Abbildung 3-12).

4.2 Emissionen

4.2.1 Schadstoffe

	2016		2017		
Emissionsfaktor	[g/t _{KI}]	[%]	[g/t _{Ki}]	[%]	
Staub (TSP aus den Ofenlinien)	7,20		8,20		
Staub (13F aus den Oleninnen)		100,00		13,96	
Stickstoffoxide (als NO ₂)	653,47		634,46		
Stickstolloxide (als NO ₂)		100,00		-2,91	
Schwefeldioxid (SO ₂)	79,24		88,19		
		100,00		11,30	
Summe metallische Spurenelemente	0,135058		0,172559		
Σ (Cd, Tl, Be, As, Co, Ni, Pb, Hg, Cr, Se, Mn, V, Zn, Sb, Cu, Sn)		100,00		27,77	
	6,087		6,614		
chlorhältige Verbindungen (als HCI)		100,00		8,64	
fluorbällige Verbindungen (ele LIF)	0,278		0,283		
fluorhältige Verbindungen (als HF)		100,00		1,78	
ergeniacher Coognitionlengtoff (TOC)	60,853		62,115		
organischer Gesamtkohlenstoff (TOC)		100,00		2,07	
Kahlanataffmanayid (CO)	3.420,5		2.322,4		
Kohlenstoffmonoxid (CO)		100,00		-32,10	
Kehlenstoffdievid (CO) (inklusive klimeneutrales CO)	855.689		843.771		
Kohlenstoffdioxid (CO ₂) (inklusive klimaneutrales CO ₂)		100,00		-1,39	

Tabelle 4-2: Emissionsänderungen bei ausgewählten Schadstoffen aus Anlagen der österreichischen Zementindustrie im Bilanzjahr 2017 bezogen auf 2016

Im Jahresvergleich 2017 mit 2016 sanken die klinkerbezogenen spezifischen Emissionsfaktoren [g/tki] für Kohlenstoffmonoxid, Stickstoffoxide und Kohlenstoffdioxid. Hingegen verzeichneten die klinkerbezogenen spezifischen Emissionsfaktoren [g/tki] für Summe metallischer Spurenelemente, ofengängiger Staub, Schwefeldioxid, chlorhältige Verbindungen, organischer Gesamtkohlenstoff und fluorhältige Verbindungen Zuwächse (Tabelle 4-2).

4.2.2 Metallische Spurenelemente

Es konnten im Jahresvergleich 2017 mit 2016 bei fünfzehn metallischen Spurenelementen (Cu, Co, As, Ni, Sn, Cr, Tl, Sb, Hg, V, Zn, Pb, Be, Se und Mn) Erhöhungen bei den klinkerbezogenen Emissionsfaktoren [g/tkl] verzeichnet

werden. Bei einem metallischen Spurenelement (Cd) zeigte sich ein niedrigerer Wert (Tabelle 4-3).

Insgesamt erhöhte sich der klinkerbezogene Emissionsfaktor [g/t_{Kl}] für Summe metallische Spurenelemente (Cd, TI, Be, As, Co, Ni, Pb, Hg, Cr, Se, Mn, V, Zn, Sb, Cu, Sn) im Jahresvergleich um ca. 27,8 % auf ca. 0,1726 g/t_{Kl} (Tabelle 4-3).

Der klinkerbezogene Emissionsfaktor [g/tki] für die Summe der ausgewählten metallischen Spurenelemente Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V und Sn erhöhte sich im Jahresvergleich um ca. 32,3 % auf ca. 0,0909 g/tki (Tabelle 4-3).

Der klinkerbezogene Emissionsfaktor [g/tkɪ] für die Summe der beiden metallischen Spurenelemente Cd und TI erhöhte sich im Jahresvergleich um ca. 17,2 % auf ca. 0,0038 g/tkɪ (Tabelle 4-3).

Relativierend muß festgestellt werden, daß im Jahr 2017 in einigen österreichischen Zementwerken ein Wechsel der autorisierten Prüfinstitutionen für die Emissionsmessungen, vorgenommen wurde. Damit ist es zum Einsatz von Meßgeräten bzw. Meßverfahren mit höheren Nachweisgrenzen bei bestimmten metallischen Spurenelementen gekommen. Konzentrationswerte, die in den Meßberichten als unterhalb der Nachweisgrenze eines Meßgerätes bzw. eines Meßverfahrens ausgewiesen wurden, werden in der vorliegenden Emissionsinventur wie bisher als mögliche und somit auch erreichbare Emissionskonzentrationswerte angenommen. Aufgrund der höheren Nachweisgrenzen wurden demzufolge auch höhere Frachten für bestimmte metallische Spurenelemente berechnet.

	2015	2016	2017	2017/2016	2017/2015
metallische Spurenelement	Emissionsfaktor	Emissionsfaktor	Emissionsfaktor	Änderung	Änderung
	[g/t _{KI}]	[g/t _{KI}]	[g/t _{KI}]	[%]	[%]
Cadmium (Cd)	0,001242	0,001920	0,001905	-0,78	53,47
Thallium (TI)	0,001326	0,001314	0,001884	43,35	42,09
Beryllium (Be)	0,003469	0,003447	0,003608	4,67	4,00
Arsen (As)	0,001380	0,001571	0,002385	51,78	72,85
Cobalt (Co)	0,001363	0,001277	0,001968	54,11	44,32
Nickel (Ni)	0,018658	0,009359	0,013963	49,19	-25,16
Blei (Pb)	0,007368	0,009046	0,009817	8,53	33,24
Quecksilber (Hg)	0,040313	0,029444	0,039703	34,84	-1,51
Chrom (Cr)	0,023735	0,018219	0,026527	45,60	11,76
Selen (Se)	0,000285	0,000424	0,000437	2,95	53,43
Mangan (Mn)	0,016805	0,016886	0,017365	2,84	3,33
Vanadium (V)	0,001473	0,001845	0,002228	20,75	51,23
Zink (Zn)	0,030156	0,029841	0,034158	14,46	13,27
Antimon (Sb)	0,001256	0,001303	0,001819	39,58	44,84
Kupfer (Cu)	0,010430	0,007873	0,012904	63,89	23,72
Zinn (Sn)	0,001430	0,001288	0,001890	46,75	32,18
Summe o.g. metallische Spurenelemente	0,160688	0,135058	0,172559	27,77	7,39
Σ (Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V, Sn)	0,083898	0,068667	0,090865	32,33	8,30
Σ (Cd, Tl)	0,002567	0,003234	0,003789	17,15	47,59

Tabelle 4-3: Emissionsfaktoren für metallische Spurenelemente und ihre prozentuelle Änderung in 2017 bezogen auf 2016

4.2.3 Emissionskonzentrationen ausgewählter Schadstoffe

Im Jahresvergleich 2017 mit 2016 verbesserte sich die auf 10,0 Vol.-% O₂ bezogene - als Jahresmittelwert ausgewiesene - Emissionskonzentration für Stickstoffoxide, während sich die Summenkonzentrationen für diverse metallische Spurenelemente, sowie die Emissionskonzentrationen für ofengängigen Staub, Schwefeldioxid und organischen Gesamtkohlenstoff verschlechterten (Tabelle 4-4).

Emissional contration (Jahraamittahuart 10.0) (cl. 9/.0.)	2016		2017		
Emissionskonzentration (Jahresmittelwert, 10,0 Vol% O ₂)	[mg/m ³ (Vn)tr.]	[%]	[mg/m³(Vn)tr.]	[%]	
Otacile (TCD and day Ofanlinian)	3,09		3,55		
Staub (TSP aus den Ofenlinien)		100,00		14,76	
Sticketofferida (ala NO.)	280,7		274,4		
Stickstoffoxide (als NO ₂)		100,00		-2,23	
Calculated (CO)	34,0		38,1		
Schwefeldioxid (SO ₂)		100,00		12,08	
consider Consider Market (TOC)	26,1		26,9		
organischer Gesamtkohlenstoff (TOC)		100,00		2,79	
5 (Od TI Da Aa Ca Ni Dh Ha Ca Ca Ma V 7a Ch Ca Ca	0,058015		0,074643		
Σ (Cd, Tl, Be, As, Co, Ni, Pb, Hg, Cr, Se, Mn, V, Zn, Sb, Cu, Sn)		100,00		28,66	
5 (OL A) BL O O O ALAN NO O	0,029496		0,039305		
Σ (Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V, Sn)		100,00		33,25	
5 (Cd TI)	0,001389		0,001639		
Σ (Cd, Tl)		100,00		17,97	

Tabelle 4-4: Emissionskonzentrationen ausgewählter Luftschadstoffe aus Anlagen der österreichischen Zementindustrie und ihre prozentuelle Änderung in 2017 bezogen auf 2016 (Jahresmittelwerte, 10,0 Vol.-% O₂)

_	_										
5	10	hΔ	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	en	10	r7/	21	\sim	nı	71	

1.)	Tabelle 2-1: erfaßte Schadstoffe	3
2.)	Tabelle 3-1: Gesamtübersichtstabelle - Emissionen und Produktionsmittel der österreichischen Zementindustrie (ohne Mahlwerke) im Vergleichszeitraum 2012 bis 2017	6
3.)	Tabelle 4-1: Produktionsdaten für Anlagen der österreichischen Zementindustrie im Jahresvergleich 2017 mit 2016	26
4.)	Tabelle 4-2: Emissionsänderungen bei ausgewählten Schadstoffen aus Anlagen der österreichischen Zementindustrie im Bilanzjahr 2017 bezogen auf 2016	27
5.)	Tabelle 4-3: Emissionsfaktoren für metallische Spurenelemente und ihre prozentuelle Änderung in 2017 bezogen auf 2016	28
6.)	Tabelle 4-4: Emissionskonzentrationen ausgewählter Luftschadstoffe aus Anlagen der österreichischen Zementindustrie und ihre prozentuelle Änderung in 2017 bezogen auf 2016 (Jahresmittelwerte, 10,0 Vol% O ₂)	29
6 /	Abbildungsverzeichnis	
1.)	Abbildung 2-1: Anlagenspiegel der österreichischen Zementwerke mit Ofenbetrieb (Stichtag: 31.12.2017)	4
2.)	Abbildung 3-1: Rohmehleinsatzmenge, Klinkerproduktionsmenge und Zementproduktionsmenge der österreichischen Zementindustrie im Beobachtungszeitraum 2012 bis 2017 (ohne Mahlwerke)	7
3.)	Abbildung 3-2: Klinkerfaktor und Rohmehlfaktor im Beobachtungszeitraum 2012 bis 2017	7
4.)	Abbildung 3-3: Entwicklung des Klinkerbrandfaktors / [t _{Kl} /h _{OB}] in den Anlagen der österreichischen Zementindustrie im Beobachtungszeitraum 2012 bis 2017	8
5.)	Abbildung 3-4: Einsatzmengen konventioneller Brennstoffe in der österreichischen Zementindustrie im Beobachtungszeitraum 2012 bis 2017	8
6.)	Abbildung 3-5: Einsatzmengen von Ersatzbrennstoffen (EBS) in Anlagen der österreichischen Zementindustrie im Beobachtungszeitraum 2012 bis 2017	9
7.)	Abbildung 3-6: Entwicklung des thermischen und elektrischen Energieeinsatzes in österreichischen Zementwerken mit eigener Klinkererzeugung im Beobachtungszeitraum 2012 bis 2017	9
8.)	Abbildung 3-7: Ersatzbrennstoffenergieanteil am thermischen Energieeinsatz (Substitutionsgrad) in Anlagen der österreichischen Zementindustrie für den Beobachtungszeitraum 2012 bis 2017	10
9.)	Abbildung 3-8: Brennstoffwärmemengen aus der Verfeuerung von Ersatzbrennstoffen in Anlagen der österreichischen Zementindustrie (ohne Mahlwerke) im Beobachtungszeitraum 1988 bis 2017	10
10.)	Abbildung 3-9: auf die Tonne Zement bzw. auf die Tonne Klinker bezogener spezifischer Brennstoffenergieeinsatz in Anlagen der österreichischen Zementindustrie für den Beobachtungszeitraum 2012 bis 2017	11
11.)	Abbildung 3-10: über den Bilanzzeitraum 2015, 2016 und 2017 mengengewichtete Mittelwerte von Heizwerten unterschiedlicher Drehofenbrennstoffe (im Einsatzzustand) mit werksspezifischen Minimal- und Maximalwerten	11
12.)	Abbildung 3-11: mittlerer spezifischer Energieeinsatz je Tonne Zement in Anlagen der österreichischen Zementindustrie (ohne Mahlwerke) im Vergleichszeitraum 2012 bis 2017	12
13.)	Abbildung 3-12: Wärmeabgabe an externe Verbraucher aus Anlagen der österreichischen Zementindustrie im Beobachtungszeitraum 2005 bis 2017	12
14.)	Abbildung 3-13: Einsatzmengen von Ersatzbrennstoffen (EBS) in Anlagen der österreichischen Zementindustrie von 2012 bis 2017	13
15.)	Abbildung 3-14: Entwicklung des spezifischen Energieeinsatzes (exklusive elektrischer Energieeinsatz) und Darstellung des spezifischen, trockenen Gesamtabgasnormvolumens (nicht auf 10,0 Vol% O ₂ bezogen) in österreichischen Zementwerken mit eigener Klinkererzeugung jeweils für den Zeitraum 2012 bis 2017	14

16.)	Abbildung 3-15: Einsatzmengen sekundärer Rohstoffe in Anlagen der österreichischen Zementindustrie (ohne Mahlwerke) im Zeitraum von 2012 bis 2017	15
17.)	Abbildung 3-16: Spezifizierung der im Zeitraum von 2012 bis 2017 in Anlagen der österreichischen Zementindustrie (ohne Mahlwerke) verwendeten sonstigen sekundären Rohstoffmassenströme	16
18.)	Abbildung 3-17: Einsatzmengen primärer Rohstoffe in Anlagen der österreichischen Zementindustrie im Zeitraum von 2012 bis 2017 (ohne Mahlwerke)	17
19.)	Abbildung 3-18: Einsatzmengen primärer Zumahlstoffe in Anlagen der österreichischen Zementindustrie von 2012 bis 2017 (ohne Mahlwerke)	17
20.)	Abbildung 3-19: Einsatzmengen sekundärer Zumahlstoffe in Anlagen der österreichischen Zementindustrie von 2012 bis 2017 (ohne Mahlwerke)	18
21.)	Abbildung 3-20: jährliche Emissionen an Stickstoffoxiden (als NO ₂), an Schwefeldioxid, an organischem Gesamtkohlenstoff, an Ammoniak und an Staub (TSP aus Ofenlinien) aus Anlagen der österreichischen Zementindustrie (ohne Mahlwerke) im Zeitraum von 2012 bis 2017	18
22.)	Abbildung 3-21: zeitlicher Verlauf der jährlichen, spezifischen Emissionsmassenströme (Emissionsfaktoren) für Kohlenstoffmonoxid, für Stickstoffoxide (als NO ₂), für Schwefeldioxid, für Ammoniak und für Staub (TSP aus Ofenlinien), jeweils bezogen auf 1 t Klinker (2012 - 2017, ohne Mahlwerke)	19
23.)	Abbildung 3-22: zeitlicher Verlauf der jährlichen, spezifischen Emissionsmassenströme (Emissionsfaktoren) für Kohlenstoffmonoxid, für Stickstoffoxide (als NO ₂), für Schwefeldioxid, für Ammoniak und für Staub (TSP aus Ofenlinien), jeweils bezogen auf 1 t Zement (2012 - 2017, ohne Mahlwerke)	19
24.)	Abbildung 3-23: zeitliche Entwicklung der jährlichen Emissionen an chlor- und fluorhältigen Verbindungen (ausgewiesen als HCl bzw. HF) sowie der jährlichen Gesamtemissionen an Spurenelementen jeweils für den Zeitraum 2012 bis 2017 (ohne Mahlwerke)	20
25.)	Abbildung 3-24: zeitliche Entwicklung der jährlichen Emissionen an Kohlenstoffdioxid aus Anlagen der österreichischen Zementindustrie (exklusive Mahlwerke) im Beobachtungszeitraum 2012 bis 2017 (nach EZG)	20
26.)	Abbildung 3-25: auf die Tonne Klinker bezogene, spezifische CO ₂ -Emissionen (mit biogenen CO ₂ -Emissionen) aus Anlagen der österreichischen Zementindustrie im Beobachtungszeitraum 2012 bis 2017 (nach EZG)	21
27.)	Abbildung 3-26: auf die Tonne Klinker bezogene, spezifische CO ₂ -Emissionen (ohne biogene CO ₂ -Emissionen) aus Anlagen der österreichischen Zementindustrie im Beobachtungszeitraum 2012 bis 2017 (nach EZG)	21
28.)	Abbildung 3-27: auf GJ Brennstoffwärmemenge bezogene, relative CO ₂ -Emissionen aus Anlagen der österreichischen Zementindustrie im Beobachtungszeitraum 2012 bis 2017 (nach EZG)	22
29.)	Abbildung 3-28: klinkerbezogene Emissionsfaktoren diverser metallischer Spurenelemente aus Anlagen der österreichischen Zementindustrie (ohne Mahlwerke) für den Zeitraum von 2012 bis 2017	23
30.)	Abbildung 3-29: Ressourcenschonungsfaktor für Anlagen der österreichischen Zementindustrie im Vergleichszeitraum 2012 bis 2017	24
31.)	Abbildung 3-30: Staubmassenstrom (TSP) aus "gefaßten Quellen, ausgenommen Ofenanlagen" nach "Zementverordnung" § 5 für Anlagen der österreichischen Zementindustrie (exklusive Mahlwerke) im Beobachtungszeitraum 2012 bis 2017	24
32.)	Abbildung 3-31: staubförmige Emissionen unter Berücksichtigung von Staubemissionen aus "gefaßten Quellen, ausgenommen Ofenanlagen" nach "Zementverordnung" § 5 für Anlagen der österreichischen Zementindustrie (exklusive Mahlwerke) im Beobachtungszeitraum 2012 bis 2017	25